Physics

Rotational Motion

Teaching purpose In this section you will learn: describe the physical meaning of rotational variables as applied to rotation around a fixed axis; explain how angular velocity is related to tangential velocity; calculate, knowing the time dependence of the angular position, the instantaneous angular velocity at any time; determine the angular velocity and angular acceleration of a rotating body; calculate the average angular acceleration when the angular velocity changes; calculate instantaneous angular acceleration, knowing the dependence of angular velocity on time. So far, we have dealt mainly with the analysis of progressive motion. The variables describing translational motion are: displacement, velocity and acceleration. We now extend our description of motion to rotation about a fixed axis. We will see that rotation is described by a set of related variables, similar to those we used to describe translational motion.

Angular speed

Związek pomiędzy wartością kąta θ a promieniem okręgu i długością łuku wyraża się wzorem:
θ=s/r
Wartość wektora prędkości kątowej (ang. angular velocity), oznaczona jako ω , jest szybkością zmian kąta θ , gdy cząstka porusza się po łuku. Chwilowa wartość prędkości kątowej (ang. instantaneous angular velocity) jest definiowana jako granica, przy Δt→0 , średniej prędkości kątowej ω–=Δθ/Δt
Jednostką prędkości kątowej jest radian na sekundę (rad/s). Prędkość kątową możemy w prosty sposób powiązać z częstotliwością f (zwaną też prędkością obrotową), wyrażaną w obrotach na sekundę (obr/s). Aby wyznaczyć prędkość kątową, musimy pomnożyć liczbę obrotów na sekundę przez 2π , ponieważ jeden pełny obrót oznacza przemieszczenie kątowe równe 2π radianów: ω=2πf.

Rigid Body and Rotation - Two Rotating Discs

Two thin discs are attached to a horizontal axis, making 300 revolutions per second, 20 cm apart. To determine the speed of the bullet, it was fired in such a way that it pierced both targets at the same distance from the axis of rotation. Find the avarage speed of the bullet between the targets if the penetration points of the targets are offset by 18°.

Despite the complicated description, when we think carefully and imagine the whole situation, the task is very simple. We have the distance traveled, we do not have time and we have to calculate the avarage speed, by definition:

S = v*t

So we need the time. It can be derived from the movement of the disks:

omega = 2 * pi * f

alfa = omega * t

Having these two simple equations, we can very easily derive the time:

t = (alfa)/(2 * pi * f)

#array of zeros (shape of it within parentheses)
zeros_array = np.zeros((3, 3))
#Output:
[[0. 0. 0.]
 [0. 0. 0.]
 [0. 0. 0.]]
#array of ones
ones_array = np.ones((3, 3))
print(ones_array)
#Output:
[[1. 1. 1.]
 [1. 1. 1.]
 [1. 1. 1.]]
#empty array
empty_array = np.empty((2, 3))
print(empty_array)
[[0. 0. 0.]
 [0. 0. 0.]
 [0. 0. 0.]]
#arange method on array
array_arange = np.arange(12)
print(array_arange)
[0 1 2 3 4 5 6 7 8 9 10 11]
array_arrange.reshape(3, 4)
#Output:
[[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11]]
#linspace - equaly spaced data elements
linear_data = np.linspace(11, 20, 5)
#11 - first element
#20 - last element
#5 - number of equidistant elements
print(linear_data)
#Output:
[11. 13.25 15.5 17.75 20. ]
#One dimensional array
one_dimension = np.arrange(15)
print(one_dimension)
#Output:
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14]
#Two dimensional array
two_dimensions = one_dimension.reshape(3, 5)
print(two_dimensions)
#Output:
[[0, 1, 2, 3, 4],
 [5, 6, 7, 8, 9]
 [10, 11, 12, 13, 14]
#Three dimensional array
three_dimensions = np.arrange(27).reshape(3, 3, 3)
print(three_dimensions)
#Output:
[[[ 0 1 2 ]
  [ 3 4 5 ]
  [ 6 7 8 ]]
 [[ 9 10 11 ]
  [ 12 13 14 ]
  [ 15 16 17 ]]
 [[ 18 19 20 ]
  [ 21 22 23 ]
  [ 24 25 26 ]]]

PyGym Exercise 2.1

Write a program that asks the user for their name and year of birth, then calculates and prints their age.

Examplary execution:

Give your name:

Johnny

Enter year of birth:

1989

John, you are 30 years old.

PyGym Exercise 2.2

Write a program that asks the user for their name and year of birth, then calculates and prints their age.

Examplary execution:

Give your name:

Johnny

Enter year of birth:

1989

John, you are 30 years old.